Big data

Big data e analytics: definizione, infrastruttura, best practice e casi d’uso in azienda

big data

Con l’espressione Big Data ci si riferisce a insiemi di dati che sono così grandi in volume e così complessi che i software e le architetture informatiche tradizionali non sono in grado di catturarli, gestirli ed elaborarli in un tempo ragionevole.

Se un database tradizionale può gestire tabelle magari composte di milioni di righe, ma su decine o poche centinaia di colonne, i big data richiedono strumenti in grado di gestire lo stesso numero di record, ma con migliaia di colonne.

In più, spesso i dati non sono nemmeno disponibili in forma strutturata, facilmente incasellabile in righe e colonne appunto, ma sono presenti sotto forma di documenti, meta dati, posizioni geografiche, valori rilevati da sensori IoT e numerose altre forme, dal semi-strutturato al completamente destrutturato.

La quantità e la complessità che fanno sì che un insieme di dati si possa definire “Big Data” è un tema dibattuto. In molti prendono il petabyte (1.000 terabyte) come soglia, e diversi progetti operano nel campo degli exabyte (1.000 petabyte). Considerare solo le dimensioni della base di dati è però ritenuto da molti un errore che può essere fuorviante per le aziende che, pur non disponendo di archivi così vasti, possono trarre comunque un vantaggio dall’uso di tecnologie e approcci big data, per esempio per estrarre valore da dati non strutturati, o che devono essere elaborati in tempi velocissimi (approccio chiamato a volte “Little Data”).

Si tende quindi a definire i contorni di un progetto Big Data analizzandolo per tre diversi aspetti, a cui ci si riferisce come le “tre V dei Big Data”:

  1. Il Volume di dati
  2. La grande Varietà nei tipi di dati
  3. La Velocità con cui i dati devono essere acquisiti o analizzati

I dati che compongono gli archivi Big Data possono provenire da fonti eterogenee, come dati di navigazione di siti web, social media, applicazioni desktop e mobile, esperimenti scientifici e – sempre più spesso – sensori e dispositivi di tipo Internet of Things.

Leggi anche: 25 aziende di Big Data da tenere d’occhio

Il concetto di Big Data porta con sé diversi elementi e componenti che permettono ad aziende e organizzazioni di sfruttare i dati per risolvere in modo pratico numerosi problemi di business. I diversi componenti da considerare sono:

  • L’infrastruttura IT per i Big Data;
  • L’organizzazione e la struttura di archiviazione dei dati;
  • Gli strumenti analitici per Big Data;
  • Le competenze tecniche e matematiche;
  • Non ultimo, un reale caso di business in cui i Big Data possano apportare valore.

Big Data Analytics

Big Data Analytics

Quel che davvero permette di estrarre dai dati un valore utile al business sono le analisi interpretative che vi si possono applicare. Senza analisi, si tratta solo di dati senza valore, e che anzi comportano un notevole costo di archiviazione.

Applicando metodi e strumenti di analisi ai dati, le aziende possono trovare benefici come aumento delle vendite, miglior soddisfazione del cliente, maggiore efficienza e più in generale un aumento della competitività.

La pratica analitica comporta l’esaminare gli insiemi di dati, ricavarne gruppi omogenei tra loro per ottenere informazioni utili altrimenti nascoste, e trarre conclusioni e previsioni sulle attività future. Analizzando i dati, le aziende possono prendere decisioni di business più informate, per esempio su quando e dove effettuare una certa campagna marketing, o individuare una necessità che possa essere soddisfatta da un nuovo prodotto o servizio.

Le analisi sui Big Data si possono fare con applicazioni generiche di business intelligence, o con strumenti più specifici, anche sviluppati ad hoc utilizzando linguaggi di programmazione. Tra i metodi più avanzati di analytics troviamo il data mining, dove gli analisti elaborano grandi insiemi di dati per individuare relazioni, pattern e tendenze.

Una tecnica molto usata prevede di fare una prima analisi esplorativa, magari su un ridotto insieme di dati, allo scopo di individuare pattern e relazioni tra i dati, per poi eseguire un’analisi di conferma per verificare se le supposizioni estratte dalla prima analisi sono verificati nei fatti.

Un’altra grande distinzione è quella tra l’analisi quantitative dei dati (o analisi di dati numerici che esprimono valori quantificabili), e analisi qualitative, che si focalizza su dati non numerici, come immagini, video, suoni e testi non strutturati.

L’infrastruttura IT per i Big Data

Affiché un progetto Big Data possa avere successo, le aziende hanno bisogno di dedicare a questo carico di lavoro un’infrastruttura adeguata e spesso molto specifica, in grado di raccogliere, archiviare ed elaborare i dati per presentarli in una forma utile. Il tutto garantendo la sicurezza delle informazioni mentre sono archiviate e in transito.

Leggi anche: 100 best practice per mantenere al sicuro i Big Data

Al livello più alto, questo include sistemi di storage e server progettati per i Big Data, framework software, database, tool, software di analytics e integrazioni tra i Big Data e altre applicazioni. Molto spesso, questa infrastruttura è presente on-premises, o comunque in forma di macchine hardware collocate in un data center remoto. Cloud e virtualizzazione, considerate a ragione due architetture IT pratiche ed efficienti, spesso non si rivelano la scelta migliore per trattare i Big Data, soprattutto per quanto riguarda la fase di elaborazione dei dati.

Tra le tecniche usate per velocizzare le elaborazioni analitiche sui Big Data, infatti, ci sono l’uso di database in-memory e di schede grafiche accelerate (GPU), che devono continuamente scambiare dati con i dischi. È facile intuire che se la componente di elaborazione e memoria è lontana da quella di storage, a farne le spese sarà la connessione di rete. In ambienti cloud e virtualizzati, il volume dei dati e la velocità di elaborazione richiesta rischiano di generare dei colli di bottiglia nella componente di networking.

Per questo motivo si tende a preferire un’architettura composta da cluster di numerosi server fisici, anche a basso costo, dotati però di molta memoria RAM, una o più GPU e hard disk veloci, tutto accentrato sulla stessa scheda madre. Al tutto vengono abbinati strumenti software progettati per suddividere il carico di lavoro sui singoli server che compongono i cluster.

La regola generale ha ovviamente le sue eccezioni: elaborazioni batch che non hanno bisogno di risposte in tempo reale, e che magari devono essere eseguite solo saltuariamente (per esempio report finanziari, estratti conto o fatturazione di un servizio eseguiti mensilmente) possono essere eseguiti con profitto su un servizio cloud che viene acceso solo per le ore o i giorni necessari all’elaborazione, e poi disattivato per ridurre i costi.

Anche la semplice raccolta dei dati può comportare complessità e ostacoli. Se alcuni dati sono statici e sempre disponibili, come quelli derivanti da file, log e social media, altri devono essere raccolti ad alta velocità e immediatamente registrati senza ritardi, e questo può comportare sfide per quanto riguarda le prestazioni dello storage e della connettività. Esempi di dati dinamici che devono essere acquisiti in modalità “streaming” includono i segnali raccolti da sensori, transazioni economiche e finanziarie e tutti i dati generati dalla proliferazione di sensori IoT.

La sempre maggiore penetrazione delle soluzioni Internet of Thing, con le aziende che aggiungono sensori e connettività a ogni sorta di prodotto, dai gadget agli autoveicoli, sta facendo crescere una nuova generazione di soluzioni Big Data espressamente pensate per il mondo IoT.

Tra le opzioni di archiviazione più usate in ambito Big Data troviamo i tradizionali data warehouse, i data lake e il cloud storage.

  • Data warehouse
    I tradizionali sistemi su cui le applicazioni aziendali registrano i propri dati, dall’ERP al CRM, possono ovviamente costituire una delle fonti da cui le applicazioni Big Data attingono le informazioni.
  • Data lake
    I data lake sono repository di informazioni in grado di contenere volumi di dati estremamente grandi nel loro formato nativo, almeno fino al momento in cui è necessario effettuare elaborazioni e ricavare informazioni per le applicazioni di business. In quel caso, e solo a quel punto, i sistemi Big Data si occuperanno di estrarre da quei dati le informazioni via via richieste. La Internet of Things e le iniziative di trasformazione digitale, con la raccolta di informazioni dettagliate sui singoli clienti, stanno alimentando sempre più i data lake.
  • Cloud Storage per Big Data
    Sempre più dati aziendali sono archiviati nel cloud, talvolta in modalità object-storage, ed è spesso necessario far confluire questi dati nelle applicazioni Big Data.

Tecnologie specifiche per Big Data

Oltre all’infrastruttura IT generica appena descritta, esistono alcune tecnologie specifiche che sono essenziali alla riuscita di qualsiasi progetto di Big Data.

L’ecosistema Hadoop

La libreria software Hadoop, un progetto open source della Apache Foundation, è un framework che permette la gestione di grandi set di dati, strutturati e non, e la loro elaborazione distribuita su cluster di computer usando modelli di programmazione molto semplici. È progettata per scalare da un singolo server fino a migliaia, ciascuno composto delle componenti di elaborazione e storage.

Il framework include diversi moduli:

  • Hadoop Common
    Le utility di base che supportano altri moduli Hadoop
  • Hadoop Distributed File System
    Fornisce accesso ad alta velocità ai dati, strutturati e non. Permette di “montare” qualsiasi fonte dati raggiungibile con un url.
  • Hadoop YARN
    Un framework per la schedulazione dei job e la gestione delle risorse del cluster
  • Hadoop MapReduce
    Un Sistema basato su YARN per l’elaborazione in parallelo di grandi data set
Leggi anche: Di quanti Hadoop abbiamo bisogno?

Apache Spark

Anch’esso parte dell’ecosistema Hadop, Apache Spark è un framework open source per le elaborazioni in cluster che serve come motore per la gestione di Big Data nel contesto di Hadoop. Spark è diventato uno dei principali framework di questo tipo e può essere utilizzato in molti modi diversi. Offre collegamenti nativi con diversi linguaggi di programmazione come Java, Scala, Python (specialmente la distribuzione Python Anaconda) e R, e supporta SQL, i dati streaming, il machine learning e l’elaborazione con database a grafo.

Scarica le nostre guide in PDF:
– Guida al linguaggio R – livello base
– Guida al linguaggio R – livello avanzato 

I database NoSQL

I database SQL tradizionali sono progettati per transazioni affidabili e per rispondere a query ad-hoc su dati ben strutturati. Questa rigidità rappresenta però un ostacolo per alcuni tipi di applicazioni. I database NoSQL superano questi ostacoli, memorizzando e gestendo i dati con modalità che permettono una grande flessibilità e velocità operativa. Diversamente dai database relazionali tradizionali, molti dei database NoSQL possono scalare in orizzontale su centinaia o migliaia di server.

Leggi anche: 11 Database SQL e NoSQL a confronto

Database In-memory

Un database in memoria (IMDB, da non confondere con l’Internet Movie Data Base) è un DBMS che utilizza principalmente la memoria RAM, e non l’hard disk, per archiviare i dati. Questo consente ovviamente una velocità di esecuzione molto maggiore, che rende possibili applicazioni di real time analytics su Big Data altrimenti impensabili.

Le competenze per i Big Data

Le difficoltà tecniche, teoriche e pratiche per la progettazione e l’esecuzione di applicazioni di Big Data richiedono competenze specifiche, che non sempre sono presenti nei reparti IT delle aziende che si sono formati su tecnologie differenti da quelle odierne.

Leggi anche: Le professioni del futuro, tra Big Data e intelligenza artificiale

Molte di queste competenze sono relative gli specifici strumenti per i Big Data, come Hadoop, Spark, NoSQL, i database in-memory e i software analitici. Altre competenze sono invece relative a discipline come data science, statistica, data mining, analisi quantitativa, visualizzazione dei dati, programmazione in generale e per gli specifici linguaggi (Python, R, Scala), strutturazione dei dati e algoritmi.

Leggi anche: Analisi dati: come formare i dipendenti

Affinché un progetto Big Data abbia successo, occorrono anche competenze manageriali, in particolare per quanto riguarda la progettazione e pianificazione delle risorse e la gestione dei conti, che con la crescita del volume di dati rischiano di crescere senza controllo.

Leggi anche: Cosa fa e quanto guadagna un data scientist

Al giorno d’oggi, molte delle figure che abbiamo indicato nelle righe precedenti sono tra le più richieste del mercato. Se avete una laurea in matematica o statistica ma vi mancano competenze informatiche, è il momento giusto per colmarle con corsi e formazione specifici per i Big Data. Ci sono enormi opportunità di lavoro.

Casi d’uso per i Big Data

I Big Data si possono impiegare per risolvere  numerosi  problemi di business, o per aprire nuove opportunità. Ecco alcuni esempi.

Customer analytics
Le aziende possono analizzare il comportamento dei consumatori in ottica di marketing multicanale per migliorare l’esperienza del cliente, aumentare i tassi di conversione, le vendite collaterali, offrire servizi e aumentare la fidelizzazione.

Analytics operazionale
Migliorare le prestazioni operative e fare un uso migliore degli asset aziendali sono l’obiettivo di molte organizzazioni. I Big Data posson aiutare le imprese a trovare nuovi modi per operare in modo più efficiente.

Prevenzione delle frodi e dei crimini
Aziende e governi possono individuare attività sospette attraverso il riconoscimento di pattern che possano indicare un comportamento fraudolento, prevenendone il manifestarsi o individuando il colpevole.

Ottimizzazione dei prezzi
Le aziende possono usare i dati per ottimizzare i prezzi applicati a prodotti e servizi, espandendo il proprio mercato o aumentando i ricavi.

Di Andrea Grassi e Bob Violino, Infoworld

analytics

Gartner: maturità analytics bassa per 9 aziende su 10

Da un nuovo report di Gartner si scopre che la bassa maturità della BI limita fortemente i leader degli analytics che stanno tentando di modernizzare la business intelligence.
analytics

Qlik presenta Qlik Data Catalyst e Associative Big Data Index

Qlik Data Catalyst e Associative Big Data Index sono le due nuove offerte di Qlik per guidare il percorso dei dati aziendali grezzi fino alle intuizioni ottenute dagli utenti finali.
open data

Open Data in Europa: il massimo potenziale è ancora lontano

Un novo report di Capgemini mette in luce la discontinuità con cui i Paesi europei stanno abbracciando la trasformazione guidata dagli Open Data.
analytics

Commvault Activate: visibilità completa sui dati in azienda

Commvault Activate aiuta le aziende a sfruttare al meglio i loro dati per abbattere i costi dello storage, accelerare i progetti di eDiscovery e migliorare la conformità al GDPR e ad altre normative sulla privacy.

Cosa c’è di nuovo nella IoT: tendenze per il 2019

Dall'IoT Solutions World Congress di Barcellona, i principali trend della Internet of Things, tra tentativi di semplificazione dei formati, IA, Edge Computing e Digital Twin
analytics

L’alfabetizzazione dei dati può valere fino a 500 milioni di dollari

Il Data Literacy Index, commissionato da Qlik e realizzato dagli accademici della Wharton School e IHS Markit, rivela correlazioni tra performance aziendali e alfabetizzazione dei dati della forza lavoro.
Insight Technology

I migliori strumenti di web analytics

Dieci alternative a Google Analytics per monitorare il flusso del traffico sul vostro sito

Luna Rossa reinventerà il suo scafo con il machine learning

Le prossime barche avranno “ali” che le faranno planare invece che navigare, rivoluzionando quel che si sa su come si progetta e si porta una barca. Teorema Engineering e Wärtsilä studieranno il problema con il machine learning.
datacentrica

I piani innovativi di Intel per affrontare l’era datacentrica

Storage, intelligenza artificiale, prestazioni, data-center, nuovi processori Intel Xeon. Ecco come Intel si prepara ad affrontare le rivoluzioni dell’era datacentrica.

La mancanza di alfabetizzazione dei dati ostacola le performance aziendali

Il nuovo report di Qlik rivela come la carenza di fiducia nell’alfabetizzazione dei dati stia rallentando il successo in una nuova era fatta di robotica e automazione.

Veeam Software svela la sua nuova visione per la Hyper-Available Enterprise

La Hyper-Availability Plaform di Veeam, di cui si parlerà anche in Italia al VeeamON Forum del 7 giugno, assicura la continuità del business, riduce i rischi e accelera l’innovazione.
analytics

I migliori strumenti gratuiti di data analytics

Un software efficace per l’analisi dei dati non è necessariamente costoso. Questi sette strumenti gratuiti possono aiutare le aziende a scoprire nuovi insights ed elaborare previsioni da diverse fonti di dati
big data

La cultura della gestione dei dati nelle aziende italiane secondo IDC

Entro il 2021 IDC prevede che una grande azienda su quattro avrà creato un processo di gestione dei dati per sfruttare al meglio il fattore produttivo e decisionale del nuovo millennio: l’informazione.
analytics

Microsoft spiega come ottenere il meglio da Windows Analytics

I team IT possono fruire della nuova documentazione per creare report personalizzati con i dati di Windows Analytics e integrarli con altre informazioni
Self Driving Network

Self Driving Network: le reti del futuro diventano autonome con Juniper

Con l’ambizioso progetto di Self Driving Network, Juniper si prefigge l’obiettivo di sviluppare una concezione completamente nuova per le grandi reti, dove l’intelligenza artificiale...

Analisi predittiva tra machine learning e intelligenza artificiale

L’impiego di tecnologie cognitive, di machine learning e di intelligenza artificiale sta ampliando il fronte delle opportunità delle soluzioni di predictive analytics.
Big Data Analytics

Big Data: cosa scegliere tra condivisione e collaborazione dei dati

I vantaggi della collaborazione dei dati invitano a scoprire insight nascosti, ad arricchire il valore dei dati e a perseguire l'innovazione con la fiducia nella sicurezza dei dati.

Qlik e SDA Bocconi: aziende italiane e analitiche predittive

Adottate oggi solo dal 24,8% delle organizzazioni italiane, le analitiche predittive promettono di raddoppiare entro un anno.
collaborazione dei dati

Data analytics: come utilizzarli per migliorare le strategie aziendali

Ricoh Europe pone l’accento sui data analytics e su come sfruttarli, tra IoT e intelligenza artificiale, per ottenere un miglioramento delle strategie aziendali.
4,049FansMi piace
1,852FollowerSegui

BrandPost (info)

DA NON PERDERE

analytics

Gartner: maturità analytics bassa per 9 aziende su 10

Da un nuovo report di Gartner si scopre che la bassa maturità della BI limita fortemente i leader degli analytics che stanno tentando di modernizzare la business intelligence.

Perché la Internet of Things non può fare a meno del cloud

Raggiungibilità, scalabilità, semplicità di utilizzo e capacità di acquisire e analizzare grandi quantità di dati in tempo reale: sono solo alcuni dei motivi per cui il cloud è l’architettura ideale per le piattaforme IoT.
5g

2019: le previsioni di Deloitte tra 5G, IA, smart speaker e Cina

Il report TMT Predictions 2019 di Deloitte dipinge uno scenario tecnologico in cui domineranno 5G, intelligenza artificiale e strapotere della Cina con le sue avanzatissime reti di telecomunicazione.